Lattice Delone simplices with super-exponential volume

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Delone simplices with super-exponential volume

In this short note we give a construction of an infinite series of Delone simplices whose relative volume grows super-exponentially with their dimension. This dramatically improves the previous best lower bound, which was linear. BACKGROUND Consider the Euclidean space Rd with norm ‖ · ‖ and a discrete subset Λ ⊂ Rd. A d-dimensional polytope L = conv{v0, . . . ,vn} with v0, . . . ,vn ∈ Λ is cal...

متن کامل

Lattice Delone Simplices with Exponential Volume

In this short note we give a construction of an infinite series of Delone simplices whose relative volume grows exponentially with their dimension. This dramatically improves the previous best lower bound, which was linear.

متن کامل

Volume and Lattice Points of Reflexive Simplices

Using new number-theoretic bounds on the denominators of unit fractions summing up to one, we show that in any dimension d ≥ 4 there is only one d-dimensional reflexive simplex having maximal volume. Moreover, only these reflexive simplices can admit an edge that has the maximal number of lattice points possible for an edge of a reflexive simplex. In general, these simplices are also expected t...

متن کامل

Lattice point simplices

We consider simplices in [w” with lattice point vertices, no other boundary lattice points and n interior lattice points, with an emphasis on the barycentric coordinates of the interior points. We completely classify such triangles under unimodular equivalence and enumerate. For example, in a lattice point triangle with exactly one interior point, that point must be the centroid. We discuss the...

متن کامل

Volume form as volume of infinitesimal simplices

In the context of Synthetic Differential Geometry, we describe the square volume of a “second-infinitesimal simplex”, in terms of square-distance between its vertices. The square-volume function thus described is symmetric in the vertices. The square-volume gives rise to a characterization of the volume form in the top dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2007

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2005.12.003